
mimic Documentation
Release 0.0.1

Gavin McQuillan

February 11, 2013

CONTENTS

1 Introduction to Mimic 3
1.1 What is Mimic? . 3
1.2 Getting Started . 4

2 Mimic Tutorial 5
2.1 Basics . 5

3 Advanced 7
3.1 Variable Parameters to Mock Functions . 7
3.2 Calling Mock Objects Multiple Times . 7
3.3 Stubbing Out A Class . 8
3.4 MockAnything Objects . 8
3.5 Stubbing Out Python Builtins . 8

4 TODO 9
4.1 High-level Projects . 9
4.2 Low-hanging Fruit . 9

5 Indices and tables 11

i

ii

mimic Documentation, Release 0.0.1

Contents:

CONTENTS 1

mimic Documentation, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO MIMIC

1.1 What is Mimic?

Mimic is a mock library for python that is based on Google’s Pymox, a fanstastic testing library, which is in turn based
on EasyMock – a Java mock object framework.

Mimic allows you to write true unit tests even in situations in which your code is dependent on external systems, in
situations in which dependency injection won’t work, or would otherwise be too complicated.

1.1.1 Mimic Test Philosophy

Mimic is a bit more complex than many other mocking libraries. This is a strength and a weakness. The way Mimic
tests are meant to be run is in the following order:

• specify expectations

• enter replay mode

So the first part of your test ends up being about setting up the scenario for mimic, and then the second part – after you
enter replay mode – is about calling the code you hope to test from you test function.

This two-step process is a little extra work from the onset, but it’s a hidden strength when you realize that Mimic holds
you to the expectations you set: if you don’t call a method you mock out, you get an error; if you call a method you
weren’t expecting, you get an error. It has a kind of symmetry that many developers find easy to trust because of its
explicitness.

1.1.2 Why fork?

There are a couple of features that have been needed for a while, including:

• Move the codebase over to github (and thereby git) in order to allow for more community participation

• PEP8 compliant method names

• Experimental Python 3 support

• Complete, comprehensive documentation

• Continuous Integration

• Fixes which have been rejected from pymox proper

– Nosetests fixes for ‘one-character-per-line’ exception output

3

https://code.google.com/p/pymox/

mimic Documentation, Release 0.0.1

Most importantly, though, a library this good needs active maintenance. It’s been a few years now since the latest
release. While this is a relatively mature code-base, there are a number of outstanding issues, which don’t seem to be
getting any traction.

1.2 Getting Started

1.2.1 Installing

You can download mimic from PyPI using pip or easy_install:

pip install mimic

1.2.2 Source Code and Issue Tracker

The sourcecode is available on github at https://github.com/gmcquillan/mimic/.

4 Chapter 1. Introduction to Mimic

https://code.google.com/p/pymox/issues/list
https://pypi.python.org/
http://www.pip-installer.org/
https://github.com/gmcquillan/mimic/

CHAPTER

TWO

MIMIC TUTORIAL

There are a few core concepts to understand about how Mimic works. Essentially, there’s the part of the test where
you setup your expectations, and then there’s the part where you put your mocks into replay mode and call your code
like normal.

Warning: Be careful when stubbing out your dependencies, mimic enfoces the contract you setup with it. If you
say something gets called and it doesn’t, mimic will raise an exception. You must provide a precise, deterministic
view into what these Mock objects would do in regular service.

Note: The pymox project also has decent documentation.

2.1 Basics

Here’s a rundown of the stages of a mimic-based test:

• Mimic instance

• Mocking out objects

• Replaying the mock objects

• Verifying and Unsetting the stubs (or ending Replay mode)

2.1.1 Mimic Instance

One way or another, you need a mimic instance from which to issue your commands for which class, methods, or
other structures need to be made into mock objects.

In many examples, you might see a situation like this:

from mimic import Mimic
mime = Mimic()

Often this will happen in a test classes setUp method. However, you can save yourself the trouble by having your
test class inherit from mimic.MimicTestBase:

When you do this, you get a self.mimic instance for free. However, that’s not the only reason to do so. The other
advantage is that the “Unsetting stubs” step will be done automatically at the end of each test method (more on this
later).

5

https://code.google.com/p/pymox/wiki/MoxDocumentation

mimic Documentation, Release 0.0.1

class MyTests(mimc.MimicTestBase):

def test_something(self):
self.mimic.stub_out_with_mock(...)

2.1.2 Mocking Out Objects

Mocking Out A Function Call

A vast majority of mocking can just be done by calling stub_out_with_mock, this is good for situations in which
you just need to override a particular function call so it doesn’t interact with an external system (database), and/or you
need to control the return values that the function returns.

Now assuming that your test classes inherit from MimicTestBase
self.mimic.stub_out_with_mock(my_module, ’my_func’)
my_module.my_func(mimic.ignore_arg()).and_return(’Completed’)

Mocking Out An Object

In situations where you need to access attributes and call functions on an object

my_module = self.mimic.create_mock_anything()
my_module.my_func(mimic.ignore_arg()).and_return(’Completed’)

Mocking Out A Class

In other situations you need to mock out the creation of an instance within the code that’s being tested. In those cases
use stub_out_class_with_mocks.

See Stubbing Out A Class

2.1.3 Replaying Mock Objects

After setting expectations, we trigger replay mode which means that we can make our calls for testing now.

Set expectations
self.mimic.replay_all()

Call your code
Make your assertions
self.assertTrue(my_func())

2.1.4 Unsetting Stubs/Verification

After all the mocks have played out (successfully hopefully!) we need to let Mimic know that it’s time to count all the
calls and arguments that we setup in our expectations.

self.mimic.verify_all()

6 Chapter 2. Mimic Tutorial

mimic Documentation, Release 0.0.1

Note: This isn’t necessary if you’re inheriting from mimic.MimicTestBase! self.mimic.verify_all() will be
called for you in that case!

2.1. Basics 7

mimic Documentation, Release 0.0.1

8 Chapter 2. Mimic Tutorial

CHAPTER

THREE

ADVANCED

3.1 Variable Parameters to Mock Functions

3.1.1 IgnoreArg()

3.1.2 And()

3.1.3 Or()

3.1.4 Is()

3.1.5 IsA()

3.1.6 IsAlmost()

3.1.7 StringContains()

3.1.8 Regex()

3.1.9 In()

3.1.10 Not()

3.1.11 ContainsKeyValue()

3.1.12 ContainsAttributeValue()

3.1.13 SameElementAs()

3.2 Calling Mock Objects Multiple Times

Mimic is pretty strict about which functions are called, and how many times they’re called. This could be tedious if
the same function is called with the same Parameters and you were required to setup those expectations repeatedly.

In a situation in which the function my_call is called three times during the course of a test, you could do this:

9

mimic Documentation, Release 0.0.1

my_object.my_call().and_return(True)
my_object.my_call().and_return(True)
my_object.my_call().and_return(True)

However, you can chain a multiple_times() call into the first call.

my_object.my_call().multiple_times().and_return(True)
Done! :)

Now, if you wanted to make sure it got called three times and no more or no less:

my_object.my_call().multiple_times(3).and_return(True)

3.3 Stubbing Out A Class

If you need to make an instance with the characteristic of a particular class, and whose instance attributes and methods
you wish to be able to control, try stub_out_class_with_mocks. This is particularly useful when an object is
instanstiated within the code tested by your test.

self.mimic.stub_out_class_with_mocks(my_module, ’MyClass’)
mock_object = my_module.MyClass()
Setup any expectations you want for MyClass

Now you have an object that you can set any expectations you need to override for your testing.

3.4 MockAnything Objects

These are sort of like a mock object created by stub_out_class_with_mocks however, you don’t even need to
specify a class. It’s an empty vessel with which any expectations you want. This is useful whenever you might need
an object, but the code you’re testing isn’t responsible for its creation (e.g. you can pass it into the function).

fake_result = self.mimic.create_mock_anything()
fake_result.result = ’Some fake result data’
fake_connection = self.mimic.create_mock_anything()
fake_connection.query(mimic.ignore_arg()).and_return(fake_result)

3.5 Stubbing Out Python Builtins

For example, if you need to mock out a python builtin such as open, the following code would work:

Assuming you’ve setup your mimic instance as self.mimic
fake_conf_file = StringIO.StringIO(’’)
self.mimic.stub_out_with_mock(sys.modules[’__builtin__’], ’open’)
sys.modules[’__builtin__’].open(’path/to/file.txt’, ’r’).and_return(

fake_conf_file
)

self.mimic.replay_all()

Calls you would need to make that interact with filesystems, etc.

10 Chapter 3. Advanced

CHAPTER

FOUR

TODO

Things that need doing for the project to flourish.

4.1 High-level Projects

• Full Python3 support, preferably with backwards compatibility to 2.7. There is ongoing work on the python3
branch in this repo. If you currently work in python3 and would like to use pymox or mimic, please take a look.

– Current status for the python3 branch is 72 failing tests out of 230. But basic mocking and replay of
mock objects does seem to work.

– The python3 branch relies on the six module.

4.2 Low-hanging Fruit

• Convert all of Mimic and Mimic tests to be PEP8 compatible.

• Use RST docstrings to give use autodoc capabilities with Sphinx

11

http://packages.python.org/six/

mimic Documentation, Release 0.0.1

12 Chapter 4. TODO

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

13

	Introduction to Mimic
	What is Mimic?
	Getting Started

	Mimic Tutorial
	Basics

	Advanced
	Variable Parameters to Mock Functions
	Calling Mock Objects Multiple Times
	Stubbing Out A Class
	MockAnything Objects
	Stubbing Out Python Builtins

	TODO
	High-level Projects
	Low-hanging Fruit

	Indices and tables

